
Electronic structure and phase equilibria in ternary substitutional alloys

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 6357

(http://iopscience.iop.org/0953-8984/8/35/006)

Download details:

IP Address: 171.66.16.206

The article was downloaded on 13/05/2010 at 18:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/35
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 6357–6379. Printed in the UK

Electronic structure and phase equilibria in ternary
substitutional alloys

A J S Traiber†, P E A Turchi‡, R M Waterstrat§ and S M Allen‖
† Department of Materials Science and Engineering, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
‡ Chemistry and Materials Science Department, L-268, Lawrence Livermore National
Laboratory, PO Box 808, Livermore, CA 94551, USA
§ Metallurgy Division, National Institute of Standards and Technology, Gaithersburg, MD 20899,
USA
‖ Department of Materials Science and Engineering, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

Received 4 January 1996, in final form 2 May 1996

Abstract. A reliable and consistent scheme for studying phase equilibria in ternary
substitutional alloys based on the tight-binding approximation is presented. With the electronic
parameters obtained from linear muffin-tin orbital calculations, we show that the computed
densities of states and band structures compare well with those obtained from more accurate
ab initio calculations. Disordered alloys are studied within the tight-binding coherent-potential
approximation formalism extended to multi-component alloys. The energetics of ordered systems
is obtained through effective-pair interactions computed with the general perturbation method.
Finally, partially ordered alloys are studied with a novel simplification of the molecular coherent-
potential approximation combined with the general perturbation method.

The formalism is applied to the study of bcc-based ternary Zr–Ru–Pd alloys which are
promising candidates for medical implant device applications. Using the energetics obtained
with the aforementioned scheme, we apply the cluster-variation method to study phase equilibria
for particular pseudo-binary alloys, and show that the results are consistent with the observed
behaviour of the electronic specific heat coefficient with composition for the Zr0.5(Ru, Pd)0.5

system.

1. Introduction

Solid solutions with ordered phases (‘intermetallic compounds’) that exhibit desirable
mechanical properties such as ductility and high strength are promising candidates for special
applications. Possible uses range from the high-temperature alloys for gas turbines to bearing
surfaces and mechanical joints. Because materials designed for optimum performance
rarely consist of binary systems, the ability to model higher-order systems is especially
needed. In order to develop these materials, the fundamental physical issues must be
understood. Theories capable of predicting the type of ordering, the existence of structural
transformations, and the phase equilibria are fundamental tools in this endeavour. In the
last decade, there has been considerable improvement in the calculation of both energies of
formation of disordered and ordered alloys, and multi-site effective interactions based on
band-structure calculations. Such energetic quantities can be used to obtain fairly accurate
predictions of phase stability, or ground states, atT = 0 K. The effective interactions may
then be used in combination with statistical models for phase diagram determination.
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Any theoretical study of ordering and phase stability in substitutional alloys, and
ultimately of their phase diagrams, must begin with reliable and accurate expressions for
the energy and entropy as functions of alloy composition and temperature. Over the last
few years it has been possible to combine ‘first-principles’ electronic structure calculations
for alloy energetics with statistical mechanics methods for the entropy. These statistical
mechanics methods are based on the so-called generalized Ising model within various
approximations. They range from the simpler Bragg–Williams (BW) approximation [1] to
the more sophisticated cluster-variation method (CVM) [2] and Monte Carlo simulations [3].
In these models it is assumed that the internal energy can be written as a rapidly convergent
sum of pair and multi-site interactions. Several approaches have been developed to provide
the link between electronic structure calculations and statistical models, among them the
embedded-cluster method (ECM) [4], the generalized perturbation method (GPM) [5], the
concentration wave approach [6], the Connolly–Williams method (CWM) [7], and the direct
configurational averaging method (DCA) [8].

To date, applications of these electronic structure and statistical mechanics methods have
been mostly confined to binary alloys. Ternary and higher-order alloys, by contrast, remain
relatively unexplored. The BW method has been used to study ordering in bcc ternary alloys
[9, 10, 11, 12] with special emphasis on the Heusler structure [13, 14, 15, 16], and in fcc-
based alloys [17]. In these examples, ‘canonical’ EPIs were used to study general trends, or
were inferred experimentally for more quantitative studies. Kikuchiet al [18] studied the
fcc Cu–Ag–Au phase diagram using the CVM method in the tetrahedron approximation.
Colinet et al [19] reported a similar study on phase equilibria in bcc Fe–Co–Al alloys
using the irregular tetrahedron. Examples of Monte Carlo simulations can be found in a
review by Inden and Pitsch [20], and Traiber [21], who studied phase equilibria in the
bcc Ni–Al–Ti alloys. In all cases, concentration-independent interactions estimated from
experimental results were used. More recently, the DCA method has been used to compute
interactions to study site substitutions in fcc Ni–Al–X alloys [22], where X= Co, Cu, Zn,
Pd, Si, and effective interactions and formation energies for fcc-based Rh–V–Ti, Pd–Rh–V
and Ag–Pd–Rh alloys [23].

This work will focus on one particular alloy theory to study multi-component alloys,
namely the GPM implemented within the tight-binding (TB) approximation. In the GPM,
a perturbation treatment is applied to a reference medium which is close to any particular
configuration of the alloy. Hence, intuitively, the appropriate reference medium to use is the
completely disordered state, as the one described by the coherent-potential approximation
(CPA, see section 3.1) [5, 24, 25]. This TB-CPA-GPM scheme combined with the CVM
has been successfully applied to binary alloys. For instance, Sluiteret al [26] used this
approach to study phase equilibria in Ti–Rh and Ti–Ir alloys with only d orbitals. Sluiter
and Turchi [27] carried out an investigation of phase equilibria in Ti–V and Ti–Cr alloys.
Their study accurately reproduces the energetic properties of Ti–V alloys and provides
insight into the possible metastable phases in the Ti–Cr system. Colinet and Pasturel [28]
presented a phase diagram for Ni–Ti in good agreement with the experimental one (they
used the cluster Bethe lattice method for the liquid phases). Rubin and Finel [29] reported
phase diagram calculations for three ternary systems (Ti–Al–Mo, Ti–Al–Nb and Ti–Al–W)
using the CPA-GPM-CVM approach to write the free energy, but all of the parameters
(disordered energies and effective interactions) were obtained by a fitting procedure applied
to binary phase diagrams, with the assumption that the energetic parameters do not change
significantly with the ternary addition. This rough approximation led to a ternary phase
diagram in poor agreement with the assessed one. To our knowledge, no studies of ternary
systems have been carried out using the method to the full extent that is now possible.
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We present in this paper a reliable and consistent formalism, based on the TB
approximation, for studying the electronic structure and phase stability of multi-component
transition metal alloys. We show how this simple scheme can be used to guide the design
of materials with specific electronic properties. First, we characterize the TB parameters
computed with the linear muffin-tin orbital method, with direct application to the Zr–Ru–
Pd alloy. The CPA and the GPM which are used to study disordered alloys and ordering
phenomena, respectively, are then briefly presented. We then describe an approximation
for studying partially ordered systems. Results for the ternary Zr–Ru–Pd and its binary
subsystems will illustrate the methodology.

The energetic parameters obtained with this methodology will be used in combination
with the CVM to study phase equilibria in pseudo-binary alloys. The formalism will be
illustrated with the Zr0.5(Ru, Pd)0.5 alloy. From these results, we propose an explanation for
the observed behaviour of the electronic specific heat coefficientγ .

As we mentioned before, we will illustrate the formalism presented in this paper with
the ternary Zr–Ru–Pd alloy. This system is one of a family of alloys under study with
possible applications as medical implant devices. For example there are already surgical
implants which are made in part of Co–Cr–Mo alloys. The Zr–Ru–Pd alloys have attracted
interest because of potentially good biocompatibility. In addition, preliminary experimental
work [30, 31] has shown that Zr0.5(Ru, Pd)0.5 alloys are extremely tough and wear resistant,
properties which are highly desirable for implant device applications. The Zr–Pd alloy
crystallizes at intermediate compositions with aβ-brass (or B2-type) structure but undergoes
a martensitic transformation at 620◦C; this binary alloy lacks ductility at room temperature.
The addition of Ru seems to stabilize the high-temperature B2 phase at room temperature
and significant ductility has been recently reported in these ternary alloys [30]. The
equiatomic Ru–Zr alloy also forms a B2-type structure which is stable up to its melting
point. Ruthenium seems likely to substitute for palladium atoms in the ternary B2 alloy.

From the experimental work reported on the pseudo-binary Zr0.5(Ru, Pd)0.5 alloy [30],
a significant extension of the B2 binary phase was found up to about 70 at.% Pd before
a martensitic transformation takes place, with a sharp minimum of hardness just prior to
the onset of the transformation at room temperature. The structure of the martensite was
found to be of Bf or B33-type, and experimental observations suggest a structural relationship
between matrix and martensite which involves two kinds of shuffle-type displacive operation
that take the B2 structure into B19 and finally into B33 [31].

The rest of this paper is organized as follows. In section 2, we describe in detail the
scaling of the tight-binding parameters obtained from theab initio calculations. To assess
the reliability of these parameters we compare the densities of states and the band structures
which are obtained with them to the ones given by the first-principles computations. Section
3 is concerned with a brief review of the formalism of the electronic structure methods,
CPA and GPM, including their extension for studying partially ordered alloys. In section 4
we present and discuss the results for the binary Zr–Ru, Ru–Pd, and Zr–Pd alloys, and for
the ternary Zr–Ru–Pd alloys. In section 5, the energetic parameters are used in combination
with the CVM to study phase equilibria in pseudo-binary alloys. Finally, from these results,
we propose in section 6 an explanation for the observed variation of the electronic specific
heat coefficient with composition for the Zr0.5(Ru, Pd)0.5 pseudo-binary alloy, before adding
some concluding remarks.
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2. The tight-binding parameters

2.1. Background

Until the seminal paper by Slater and Koster [32] appeared, transfer integrals were computed
analytically; this involved cumbersome integrals that included the atomic orbitals and
potentials [33, 34]. Slater and Koster derived a method where the TB parameters were
to be regarded as adjustable parameters determined by a fit to calculated energy eigenvalues
at various points in the Brillouin zone. These energy values are now computed with more
accurate density-functional methods like the augmented plane-wave method or APW (see
for example [35]).

Other approaches, mostly used in conjunction with realistic computer simulations, rely
on alternative semi-empirical TB models. These models include a number of parameters
which are obtained by fitting to some experimental values such as cohesive energies, lattice
constants and independent elastic constants. These models range from the simple second-
moment approximation to more sophisticated multi-parameter exponential and polynomial
functionals [36, 37, 38, 39].

The approach that we propose for obtaining the TB parameters uses the TB formulation
of the LMTO Hamiltonian, in the atomic sphere approximation (ASA), developed by
Andersenet al [40]. Theab initio nature of the TB-LMTO approach makes empirical fitting
unnecessary for obtaining the Slater–Koster (SK) or fundamental transfer integrals. Also,
unlike the fitted SK parameters, the TB-LMTO SK parameters are defined with reference
to the Coulomb potential, so no arbitrary rigid shift of the on-site energies is needed when
alloys are considered.

2.2. Parameters for metals and alloys

We have mentioned that the hopping integrals can be written in terms of SK parameters
which depend on the occupation of sitesn and m and the distance joining the two sites.
This relation can be written as [32]

β
λµ

i(n)j (m) =
∑

h

ch
nmwh

ij (Rn,m) (2.1)

where wh
ij (rn,m) are the SK parameters, the coefficientsch

nm depend on the direction
cosines of vectorsRn,m and i(n) and j(m) show the explicit dependence on the species
at sitesn and m (i, j = A, B or C in a ternary alloy). The superscripth runs over
the ten possible fundamental SK parameters since spd electrons are considered, i.e.,
h = ssσ, ppσ, . . . , ddσ, ddπ ,. . . , etc.

It is well known that the SK parameters depend on interatomic distance. Our approach
is to fit exponential curves to the SK parameters obtained from TB-LMTO calculations for
the pure elements at different volumes and lattice structures (bcc and fcc). It has been shown
that atomic environment has little influence on the potential parameters [41]. Figure 1 shows
the fit in the case of Zr. The fitting curves are of the form

wh
i = Ah

i e−Ph
i d (2.2)

whered is the interatomic distance in au,Ah
i andPh

i are the fitting parameters, andi refers
to the species (Zr in this case). Similar results were obtained for Ru and Pd. In figure 1, the
interatomic distance was normalized to a reference distance,d0, in this case, the equilibrium
nearest-neighbour distance in the ordered B2 RuZr structure as computed with the LMTO-
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Table 1. Tight-binding fitting parametersAh
i andPh

i for Zr, Ru and Pd; see equation (2.2).Ah

andPh are expressed in Ryd and au−1, respectively.

Zr Ru Pd

SK parameter (h) Ah Ph Ah Ph Ah Ph

ssσ −74.8759 1.2668−113.1613 1.3912−112.0270 1.3823
ppσ 57.7912 1.1981 137.4739 1.3378 137.7712 1.3240
ppπ −54.1653 1.5654−289.4552 1.8810−188.6586 1.7817
ddσ −40.4902 1.0714 −39.9683 1.1774 −28.3505 1.1708
ddπ 208.5139 1.5235 293.2882 1.7263 204.3557 1.7090
ddδ −373.1065 2.0514−619.6101 2.3208−421.0329 2.2903
spσ 74.5814 1.2541 142.0822 1.3885 141.3045 1.3765
sdσ −62.4407 1.1972 −76.4761 1.3148 −64.1410 1.3068
pdσ −47.8802 1.1358 −73.5461 1.2592 −61.8225 1.2484
pdπ 129.0867 1.5787 358.0203 1.8423 241.0660 1.7833

ASA method:d0 = (
√

3/2) aRuZr
B2 = 5.3503 au. Table 1 gives the parameters computed for

the three elements.
The SK parameters for a particular alloy were approximated according to

βh
alloy =

(∑
i

ci

√
βh

ii

)2

(2.3)

whereci is the concentration of speciesi in the alloy. (We have changed the notation of SK
parameters toβ as is customary.) This equation is arrived at when averaging the hopping
integrals for allij -bonds in random alloys, assuming that the hopping between unlike atoms
is given by the geometric mean of the appropriate integrals for the pure elements,

βh
ij =

√
βh

iiβ
h
jj

(the so-called Shiba approximation [42]). The equilibrium interatomic distance for the alloy
case is obtained from the concentration average of the atomic volumes for the pure species
(also known as Zen’s law):

�̄ =
∑

i

ci�i. (2.4)

This is a reasonable approximation for the present case. Indeed, the equilibrium atomic
volume for the (ordered) ZrRu alloy, taken as an example, computed with the LMTO-ASA
method is about 2% lower than the ideal value given by equation (2.4). In the present case
the equilibrium lattice constants for bcc-based Zr, Ru, and Pd take the values 6.712 67,
5.801 941, and 5.870 511 au, respectively, as obtained from LMTO-ASA. These values
will be used to define the lattice constant of alloys based on these three elements at any
composition.

2.3. On-site energies

Usually the variation of the on-site energies with atomic volume is ignored in electronic
structure calculations. Our LMTO calculations clearly showed a significant variation that
should be taken into account. In this work, the on-site energies were extracted from a
polynomial fit to first-principles data at different atomic volumes. A common energy shift
to all on-site energies associated with the four orbital symmetries, and for each species, was
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Figure 1. Hopping integrals (in Ryd) for Zr as functions of a renormalized interatomic distance
(see text) as computed with the exponential fits (dashed lines) to the LMTO-ASA results
(squares).

added to obtain local neutrality for the bcc-based ZrPd and ZrRu disordered alloys using
the CPA approximation (described in the next section). Thus, the on-site energies are given
by

ελ
i = ελ

i(0) + δi (2.5)
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Table 2. Polynomial coefficients for the on-site energies; see equation (2.6).

Zr

λ A (Ryd) B (Ryd au−1) C (Ryd au−2)

s 12.264 350−3.184 679 0.206 417
p 1.413 209 0.073 624 −0.033 483
t2g 7.620 164 −1.913 354 0.119 266
eg 7.078 303 −1.781 268 0.110 827

Ru

λ A (Ryd) B (Ryd au−1) C (Ryd au−2)

s 9.750 855 −2.737 415 0.188 767
p 9.586 590 −2.544 969 0.169 262
t2g 6.973 325 −2.030 726 0.141 034
eg 6.492 289 −1.904 228 0.132 484

Pd

λ A (Ryd) B (Ryd au−1) C (Ryd au−2)

s 7.608 464 −2.156 563 0.148 761
p 8.526 845 −2.294 863 0.153 963
t2g 5.163 944 −1.578 082 0.111 592
eg 4.789 320 −1.478 577 0.104 818

Figure 2. On-site energies (in Ryd) for Zr as a function ofV 1/3 (whereV is the volume of the
bcc unit cell) in au. The symbols represent the LMTO results, and the broken lines represent
the polynomial fit.

where the index 0 denotes the on-site energy associated withλ = s, p, t2g, eg for the pure
elementi, andδi is the energy-shift. In our particular case, the shifts used wereδZr = 0.0
Ryd, δRu = 0.3130 Ryd andδPd = 0.3673 Ryd. When using these values in the computation
of the RuPd random alloy, the resulting charge transfer is about 0.1 electron/atom. Figure 2
shows the fitting for the on-site energies corresponding to Zr. Similar results were obtained
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for Ru and Pd. We used a second-order polynomial of the form

ελ
i(0) = Aλ

i + Bλ
i a + Cλ

i a2 (2.6)

wherea is the lattice constant expressed in atomic units, and calculated from equation (2.4),
with �̄ = a3/2, for bcc-based alloys. Table 2 gives the polynomial coefficients for the three
elements.

2.4. Discussion on the tight-binding approximation

Before embarking on the study of the chemically disordered alloys it is important to analyse
the approximation that we have introduced so far and how the results would differ from the
ones obtained from the more accurate first-principles LMTO calculations. To illustrate this
point we will compare the band structures and DOSs for an ordered B2 ZrRu alloy. Our
‘exact’ results correspond to the LMTO calculation of the B2-type structure. We will call
this case (a). Our approximation, case (b), uses the tight-binding parameters for the pure
elements using the TB-LMTO scheme, and leads to the definition of an average alloy with
the SK parameters given by equation (2.3) with no off-diagonal disorder.

Figures 3 show the band structure for both cases. Note that the main features of the
band structure are well reproduced by the approximate scheme, especially below the Fermi
energy. Figure 4 compares the total DOS for the B2 ZrRu alloy computed with the LMTO
scheme with no off-diagonal disorder to the DOS that corresponds to case (b) in figure 3.
In the latter case, the detailed features of the DOS, which is computed with the recursion
method [43, 44] and 21 levels of continued fraction, are well reproduced. This shows that
an accurate and consistent description of the electronic structure (in terms of band structure
and DOS) can be achieved within the TB framework. On the basis of these results we will
use this simpler approximation in the rest of this work.

We have described the tight-binding approximation placing special emphasis on the TB
parameters. The parameters are extracted form LMTO-ASA calculations and scaled with
a novel scheme. We found a good agreement between the TB and theab initio results for
band structures and densities of sates. The following sections deal with the energetics of
binary and ternary alloys within this TB framework.

3. Electronic structure methods

The total energy of an alloy characterized by some ordered structure can be decomposed as
follows:

E =
∑

ciEi(N
i
e) + 1Edis(N̄e) + 1Eord(N̄e) (3.1)

whereEi andNi
e are the energy and the number of valence electrons per atom of the pure

elementi, respectively.1Edis(N̄e) is the energy of the totally disordered state,

1Edis(N̄e) = Edis(N̄e) −
∑

ciE
i(Ni

e) (3.2)

also known as theenergy of mixing, and1Eord(N̄e) is the ordering energy

1Eord(N̄e) = Eord(N̄e) − Edis(N̄e). (3.3)

Notice thatN̄e is the average number of electrons,N̄e = ∑
ciN

i
e , and that the energy of

each element is computed with its own Fermi energyEi
F (associated withNi

e). Finally the
formation energyis defined as

1Ef orm = 1Edis + 1Eord . (3.4)
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Figure 3. Band structures for the B2 RuZr compound along special directions of the irreducible
wedge of the primitive cubic Brillouin zone: (a) from LMTO calculation; (b) using the SK
parameters extracted from TB-LMTO calculations performed for the pure elements, and with
the definition of ‘average’ SK parameters for the alloy case, as defined in the text.

The following subsections deal with the computation of the disordered and ordering
energies introduced in equation (3.1).

3.1. Disordered alloys and the coherent-potential approximation

The coherent-potential approximation (CPA) [45] is a mean-field theory that describes the
average electronic structure of the completely disordered state of an alloy. It is considered
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Figure 4. Total DOSs (in Ryd/atom) of the B2 RuZr compound as functions of energy (the
Fermi energy is taken as the zero of energy) computed with the recursion method and: (a) the
SK parameters from the LMTO with no off-diagonal disorder, and (b) the same approximation
as explained in the caption of figure 3(b).

as the best single-site approximation for treating random alloys. In the absence of short-
range order, the constituents of the alloy are placed randomly on the periodic underlying
lattice; thus Bloch’s theorem does not apply. The CPA restores the translational invariance
by defining an average medium, represented by a self-energy (or coherent potential)σ .
For each orbitalλ, the potentialσλ is located at all sites except the central one, which is
occupied by an on-site energy associated with speciesi and orbitalλ. Thus, this fixed atom
is assumed to be embedded in the uniform medium of the disordered state, and as such
the CPA is a single-site approximation. This central atom causes scattering of electrons by
the potential difference1ελ

i(O)(z) = ελ
i(O) − σλ(z) between the potential at site O occupied

with atom i and that of the uniform medium. Here,z is the energy plus an infinitesimal
imaginary part. We also assume that the alloy is homogeneous, i.e., that all of the sites are
equivalent andσ does not depend on the siten, but we allow for multiple orbitalsλ. The
scattering can be described by thet-matrix element

tλi = 1ελ
i(O)(z)

1 − 1ελ
i(O)(z)G

λλ
00(z)

(3.5)

whereGλλ
00 is the diagonal matrix element of the Green’s function for the random medium,Ḡ.

The coherent potentialσλ can be obtained self-consistently if we require that the scattering
‘on average’ vanishes. For a ternary alloy we have

〈tλ〉 = cAtλA + cBtλB + cCtλC = 0. (3.6)

The notation〈· · ·〉 is taken to be the so-called configurational average which is the average
over all possible atomic configurations on the lattice sites at the average concentration of the
alloy. Sincetλi is a function ofz, ελ and Ḡ, the self-energyσλ must be found iteratively.
The first guess for the coherent potential is given by the virtual-crystal approximation (or
VCA) value,σλ

0 = ∑
ciε

λ
i . To formally describe the coherent potential andḠ(z), we start
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with the Hamiltonian of the alloy written as follows:

H = W + V (3.7)

W =
∑

mn,µλ

|n, λ〉βλµ
nm〈m, µ| (3.8)

V =
∑
n,λ

|n, λ〉ελ
n〈n, λ|. (3.9)

The hopping integralsβλµ
nm are assumed to be independent of the nature of the atoms located

at sitesn andm, andW is then the translationally invariant part of the alloy Hamiltonian.
The ελ

ns are distributed randomly on the lattice and are defined as

ελ
n =

∑
i

pi
n ελ

i (3.10)

where theoccupation numberpi
n = 1 if an atom of typei occupies siten, and otherwise

pi
n = 0.

The Green’s function for a particular configuration is given byG(z) = (z − H)−1, and
the self-energy6(z) is then defined for the average Green’s functionḠ as

Ḡ(z) = 〈G(z)〉 = (z − V − 6(z))−1. (3.11)

Within the CPA, the resulting self-energy is site-diagonal, i.e.,

6(z) =
∑
n,λ

|n, λ〉σλ〈n, λ|. (3.12)

Equation (3.6) actually represents nine equations that must be solved simultaneously.
The average Green’s function is given by an integration in reciprocal space over the first
Brillioun zone (BZ) performed with a technique of specialk-points [46]:

Ḡ(z) = 1

�BZ

∫
BZ

(z − σ − W(k))−1 d3k (3.13)

whereW(k) is the Fourier transform ofW and�BZ is the volume of the first BZ. Partial
densities of states are obtained from the Green’s function according to

nλ
i (E) = − 2

π
lim

η→0+
Im〈0λ|Ḡ(E + iη)|0λ〉 (3.14)

whereas the band energies are given by

ECPA
b =

∫ EF

−∞
En(E) dE. (3.15)

Heren(E) is the total density of states,n(E) = ∑
i,λ ci n

λ
i (E) andEF is the Fermi energy

associated with the CPA medium. The factor 2 in equation (3.14) accounts for the spin
degeneracy.

3.2. Ordered alloys

Ordering processes in alloys are conveniently described by the use of an Ising model. This
model was first introduced to study magnetic systems in which each atom of the lattice is
supposed to have a magnetic moment (Ising spin)σn which can take on one of two possible
values. Then the Hamiltonian of the system takes the form

H = −
∑
nm

Jnmσnσm (3.16)
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whereJnm is an exchange integral between spins on sitesn and m and the spin variable
σn is 1 (−1) if the spin at siten points ‘upward’ (‘downward’). The summation is over
interacting neighbour pairs. The same concept for approximate random or partially ordered
multi-component substitutional alloys can be used by writing the configurational energy
(with only pair interactions) as

E = N

2

M∑
i,j=1

N∑
n,m=1

V i,j
nmpi

np
j
m (3.17)

whereV
i,j
n,m is a real-space effective-pair interaction between the speciesi andj at sitesn

andm, respectively. There areN sites andM chemical species. The factor 1/2 is required
to avoid double counting. One major difference between the alloy and the Ising systems
is that the magnetic interactionsJnm in the Ising model are postulated to be independent
of both temperature and concentration (of spins in either direction). On physical grounds,
there is no compelling reason to assume that interatomic interactions in alloys possess these
properties [47], although the temperature dependence of the interactions seems to be most
important for magnetic systems [20]. An exhaustive analysis of the approximations involved
in the use of this ‘generalized’ Ising model when mapping the real free energy of an alloy
is discussed in reference [48].

The generalized perturbation method (GPM) [5, 25] attempts a direct determination of
concentration-dependent multi-site interactions in real space. The method is a perturbation
treatment applied to a reference medium which is close to any particular configuration
of the alloy, such as the complete disordered state described by the CPA. Any chemical
configuration is completely specified by the set of occupation numbers{pi

n}. For a particular
configuration{pi

n} the GPM allows the band energyE({pi
n}) to be expressed (see [25, 49]

for a derivation of the equations) as

E({pi
n}) = Edis(c) + 1Eord({pi

n}) (3.18)

where the energy of the disordered stateEdis is concentration dependent but independent of
the {pi

n} (thus, configuration independent) as calculated with the CPA method, and1Eord

is the ordering energy which can be expanded as follows:

1Eord = 1

2N

∑
ij

n,m,n6=m

V ij,(2)
nm δci

n δcj
m + 1

3N

∑
ijk

n,l,m,
n6=m,m 6=l,n6=l

V
ijk,(3)

nml δci
n δcj

m δck
l + · · · (3.19)

where δci
n is the concentration deviation from the average composition at siten, δci

n =
pi

n − ci , and V
ij ···(l)
nm··· are the concentration-dependentl-site effective-cluster interactions

between speciesi, j, . . . at sitesn, m, . . .. Usually, higher-order terms (order greater than
two) in equation (3.19) are negligible. In the following we will only consider the second-
order terms which comprise the effective-pair interactions (EPIs), redefined asV

ij
s wheres

is a shell index. In terms of Green’s function matrix elements, these interactions are given
by

V ij
s = − 1

π
Im

∫ EF

dE
∑
λµ

G
λµ

(s)G
µλ

(s) 1tλij 1t
µ

ij (3.20)

where EF is the Fermi energy of the CPA medium,G
λµ

(s) is the off-diagonal site matrix
element of the CPA Green’s function betweensth neighbours and1tλij = tλi − tλj . Notice
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that if V
ij
s > 0, then unlike neighbours are favoured. Finally, the ordering energy for the

ternary system can be expressed as

1Eord = 1

2

∑
i 6=j,s

(cicj zs − δqij
s )V ij

s =
∑
i 6=j,s

qij
s V ij

s (3.21)

wherezs is the coordination number,δqij
s is the number ofij -pairs, per atom, associated

with the sth shell, and theqij
s are the GPM expansion coefficients.

3.3. Partially random alloys

As we mentioned in the introduction, the stable phase along the tie-line describing the
Zr0.5(Ru, Pd)0.5 pseudo-binary system has a B2 structure beyond the martensitic region.
We have studied the characteristics of partially random alloys where, for example, Zr
occupies one of the two simple cubic sublattices which constitute the bcc lattice, and Pd
and Ru randomly occupy the other sublattice. Although the present theory is applicable
to more complicated compounds, we restrict the following arguments to the particular
bcc-based intermetallic compounds represented by(A1−cBc)0.5C0.5. They consist of two
interpenetrating primitive sublattices,α, where A and B atoms are distributed randomly,
andβ which is occupied by only C atoms. The values of the on-site energies are given by
(we drop the orbital superscript for simplicity),

εn =
{

εA or εB if n ∈ α

εC if n ∈ β.
(3.22)

A rigorous treatment of this system would require, for example, the use of the two-site
cluster CPA (CCPA) (see, for instance, reference [50]) where the disordered material is
considered to be a collection of clusters chosen so that the entire lattice can be generated
by the translation of the points in a cluster through a set of translation vectors. Each cluster
or cell contains several atoms (two in our case), and we apply the CPA equation to the cell
rather than to a single site. The cluster Green’s function now becomes a matrix and the
scalar CPA self-consistent condition, given by equation (3.6), is generalized to a matrix self-
consistent condition. The CPA self-energyσ is replaced by an(18× 18) cluster diagonal
matrix, Σ.

We can rewrite the Hamiltonian matrix for the disordered material in terms of cluster
quantities. LetεC denote the cluster diagonal part ofH , whereC = α or β, andWCC ′ the
cluster off-diagonal part. We have then (dropping orbital superscripts)

(εC)ij =
{

εiδij

βij (1 − δij ) i, j ∈ C
(3.23)

and

(WCC ′)ij = βij i ∈ C, j ∈ C ′, C 6= C ′. (3.24)

To avoid the tedious calculations involved in the CCPA computations we applied the
following approximation. The self-energy of the effective medium is required to be not
only cluster diagonal but also site diagonal, that is(Σ)ij = σδij . Furthermore, the coherent
potentialσ is placed only on the random sublattice. This approach is similar to the self-
consistent boundary-site approximation of the cluster CPA [51]. We impose the additional
restriction of fixing the on-site energies in the fully ordered sublattice, and apply the CPA
condition on the random sublattice, restoring the scalar nature of the single-site CPA.
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Figure 5. Total DOSs (in Ryd/atom) for a bcc Zr0.5Ru0.25Pd0.25 pseudo-binary alloy versus
energy (in Ryd) as computed with the CCPA (solid line) and the PCPA (dashed line).

For a full spd-electronic system, theΣ-matrix takes the form

Σ =



ελ1
n βλ1λ1

nm βλ1λ2
nm · · · βλ1λ9

nm

ελ2
n βλ2λ1

nm βλ2λ2
nm · · · βλ2λ9

nm

. . .
...

...
. . .

...

ελ9
n βλ9λ1

nm βλ9λ2
nm · · · βλ9λ9

nm

βλ1λ1
mn βλ1λ2

mn · · · βλ1λ9
mn σλ1

βλ2λ1
mn βλ2λ2

mn · · · βλ2λ9
mn σλ2

...
...

. . .
...

. . .

βλ9λ1
mn βλ9λ2

mn · · · βλ9λ9
mn σλ9


. (3.25)

To test this approximation, which we call the ‘partial CPA’ (PCPA), we have compared
results with the rigorous two-site cluster CPA treatment of the alloy. In figure 5, we can
see that a good agreement exists between the total DOSs for the Zr0.5(Ru0.5Pd0.5)0.5 alloy
computed with both methods. Let us defineε̃λ

Zr as being the site diagonal element of
the effective Hamiltonian resulting from a self-consistent calculation performed within the
CCPA, and projected onto a site of the fully ordered sublattice occupied by Zr, and of orbital
symmetry t2g. Figure 6 shows both the potentialσ t2g and this on-site term̃ε

t2g

Zr as functions
of energy, as computed with the CCPA. Notice the different scaling factors applied to the
vertical axis. We obtained similar behaviour for the on-site energies associated with s, p and
eg symmetries. This figure shows that the fluctuation of the on-site energy for the ordered
sublattice is vanishing when compared to the atomic (Zr) on-site energy value, which in the
present case is equal to 0.297 65 Ryd. We can then consider a fixed on-site energy on this
ordered sublattice, and apply the partial CPA to the fully random sublattice only.

The GPM, discussed in the subsection 3.2, can also be applied to partially random
alloys. When this is done, the computed interactions are associated with the random simple
cubic sublattice. The energy for a particular ternary configuration may then be obtained
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Figure 6. On the left: the real part of the self-energyσ t2g corresponding to the random sublattice
for the Zr0.5(RuPd)0.5 pseudo-binary alloy computed with the CCPA. On the right: the on-site
energyε̃t2g associated with the fully ordered sublattice occupied by Zr for the same alloy (see
the text). Notice the different scalings applied to the vertical axis.

with two different expansions (see equation (3.21)):

Eord = ECPA +
∑
i 6=j,s

qij
s V ij

s = ẼPCPA +
∑

i,j∈α,s

q̃s Ṽ
ij
s (3.26)

where theq̃i and Ṽi are respectively the expansion coefficients and EPIs associated with
the specific sublattice (α) where ordering takes place (here the simple cubic sublattice), and
ẼCPA is the energy of the partially random alloy. We have then two different approaches to
studying stability and order in multi-component alloys. The first one has the fully random
alloy as the starting point, while the second one starts by considering a partially ordered
system. These two approaches can be used advantageously to study preferential substitution
in multi-component alloys, since the energetics computed in the two approaches, depending
on the assumption made on preferential substitution, should give compatible results.

Table 3. Effective-pair interactions (in mRyd/atom) for the bcc-based binary alloy at equiatomic
composition, as computed with the CPA-GPM formalism.

Shell 1 2 3 4 5

V RuZr 31.18 1.75 0.80 0.81−2.37
V PdZr 20.28 1.13 1.20 1.59−2.13
V RuPd −1.57 −2.51 −0.14 −0.28 0.57

4. Results

4.1. Binary alloys

We studied the electronic structure of bcc-based Ru–Zr, Pd–Zr and Ru–Pd alloys at different
compositions using the TB-CPA-GPM formalism. For example, figure 7 shows the CPA-
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Figure 7. Total DOSs (in states Ryd−1/atom) versus
energy (in Ryd) for bcc-based binary alloys (a) RuZr,
(b) PdZr, and (c) RuPd, as computed with the CPA. The
Fermi energy is taken as the zero of energy.

Figure 8. Energies of mixing (in mRyd/atom) versus
concentration for bcc-based (a) Ru–Pd, and (b) Ru–Zr
(solid line) and Pd–Zr (dashed line) alloys, as computed
with the CPA.

DOSs for the three alloys at equiatomic composition. They each exhibit a pseudo-gap
around the half-filled band with two peaks of strong d character. This is typical for DOSs
of bcc metals and alloys where the lower half-region is related tobondingstates and the
upper half-region is related toantibondingstates [52]. According to Friedel’s theory of
cohesive energy for transition metals (TMs), the essential contribution to cohesion in TM
compounds is the broadening of the TM d band; and the occupation of the bonding or
antibonding states increases or reduces the cohesion (or stability). In the case of Ru–Pd the
Fermi energy falls far from the pseudo-gap, lying on a peak of antibonding nature. This
may be associated with the instability of the bcc Ru–Pd solution (see, e.g., reference [53]
for similar analysis of TM DOSs). Furthermore table 3 shows that the first four nearest-
neighbour EPIs between Ru and Pd are negative and, as shown in figure 8(a), the mixing
energy is positive, suggesting a clear tendency towards phase separation. On the other hand
we confirm a strong B2 ordering tendency in RuZr and a weaker B2 ordering tendency in
PdZr. The B2 ordering is favoured whenV1 > 0 andV2/V1 < 2/3 [54]. As expected, the
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mixing energies for both systems are negative as shown in figure 8(b).

4.2. Ternary alloys

The tendency towards mixing of the ternary alloy was evaluated using1Emix, defined as

1Emix({ci}, a) = Edis({ci}, a) −
∑

i

ciEi(ai) (4.1)

wherea and ai represent, respectively, the lattice parameter of the random alloy and that
of the pure elementi. This formula was used to map the energy of mixing onto the Gibbs
triangle for the bcc-based Zr–Ru–Pd alloys. We found that the energy of mixing is negative
except in a narrow range of concentration close to the Ru–Pd side, as expected.

Figure 9. First- (a) and second- (b) nearest-neighbour EPIs (in mRyd/atom) versus concentration
for bcc-based Zr0.5(Ru1−cPdc)0.5. Solid line: Ru–Zr; dotted line: Pd–Zr; dashed line: Ru–Pd.

We were interested in the ternary alloy Zr0.5(Ru1−cPdc)0.5 for which the bulk of
experimental data are available. The first- and second-nearest-neighbour EPIs,V1 andV2,
as obtained from the GPM applied to the fully random alloys, are displayed in figures 9, as
functions of concentrationc. Notice thatV1 is positive and similar in magnitude for Ru–Zr
and Pd–Zr while the interaction between Pd and Ru remains negative and about one order of
magnitude smaller. A ground-state analysis performed with a cluster method [55] and which
included nearest- and next-nearest-neighbour interactions predicts a tendency towards phase
separation in two B2 phases. This is expected from the magnitude and the negative sign of
the EPIs involved, particularly the next-nearest-neighbour interaction,V RuPd

2 , between Ru
and Pd.

Figure 10 shows the variation of this interaction with the filling of the band (or the
average number of valence electrons for the alloy). This figure tells us an important result.
Simple band-filling arguments show that replacing one element like Ru by a metal with a
lower number of valence electrons could turn this interaction positive without altering the
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Figure 10. The second-nearest-neighbour EPI (in mRyd/atom),V2, between Ru and Pd in the
Zr0.5Ru0.25Pd0.25 alloy versus band filling, as computed with the GPM applied to the fully
random CPA medium. The vertical line shows the band filling that corresponds to the actual
alloy.

other ones significantly. In this way we may be able to stabilize an ordered structure like L21

of Heusler’s type. That is possible for an A0.5BC alloy since the ordering energy difference
between a Heusler phase, L21(A2BC), and a mixture of twoβ-phases, B2(AB)/B2(AC), is
controlled mainly byV BC

2 . Our preliminary calculations agree with this analysis if Ru is
replaced, for instance, by Mo.

Figure 11. The energies of the bcc-based disordered alloy Zr0.5(Ru1−cPdc)0.5, in mRyd/atom,
versus concentration. Dashed line: as obtained with the PCPA; solid line: with the full CPA.

These results motivated the study of partial order in the Zr0.5(Ru, Pd)0.5 system with
the formalism described in subsection 3.3. We applied the PCPA-GPM to a simple cubic
sublattice occupied by Pd and Ru only. The interactions that we obtained are in agreement
with those obtained using the full CPA, i.e., they are all negative, so the elements tend
to segregate on this sublattice, giving rise to a phase separation into two B2 phases, as
concluded before. Furthermore, the disordered energy for this system is more negative than
the disordered energy of the fully random alloy at all concentrations, as shown in figure 11.
This indicates that the partially random configuration should, in principle, be more stable
than the totally random one, which is consistent with a preferential occupation of Zr on one
sublattice, as observed in the B2 structures of ZrRu and ZrPd.

The following section shows how the energetic parameters obtained within the TB-CPA-
GPM scheme are used to study phase equilibria in alloys.
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5. Phase equilibria in pseudo-binary alloys

Up to this point, we were only concerned with the energetic properties at zero temperature.
Equilibrium states at finite temperature can be obtained by minimizing the Helmholtz free
energy, F(Ni, V , T ) = U − T S for fixed number of particlesNi , since the energetic
parameters which enter this functional are, in our case, concentration dependent. Here,U

is the internal energy,T the temperature,V the volume andS the entropy of the system.
In this study, the energy of ordering and the configurational entropy are computed at finite
temperature with the CVM, the derivation of which can be found in several publications
(see, for instance, reference [56]).

Figure 12. A phase diagram for the pseudo-binary system Zr0.5(Ru1−cPdc)0.5 computed with
the CVM in the simple cube approximation. The dashed line corresponds to the spinodal line
of decomposition.

Investigation of the phase equilibria of the ternary Zr–Ru–Pd alloy was limited to the
study of the equilibrium properties of the Zr0.5(Ru, Pd)0.5 system. From the ground-state
analysis we expect this ternary system to phase separate in two B2 phases. Thus, we
populated one sublattice fully with Zr and studied the stability of Ru–Pd in the second
sublattice. We then applied the CVM to this sublattice taking the simple cube as the
maximal cluster. Twenty-one correlation functions are necessary to describe the equilibrium
configuration for the phase-separating system in this approximation. Figure 12 shows the
results that we obtained for this pseudo-binary system using the EPIsṼ RuPd

j calculated
with the GPM applied to the PCPA medium, as described in subsection 3.3. The phase
diagram displays a miscibility gap at low temperatures, that is a B2/B2 phase separation,
which is consistent with interactions being all negative. Thus, according to this theoretical
investigation, we show that the Zr species occupies preferentially one of the simple cubic
sublattices (see figure 11) whereas Ru and Pd exhibit, on the other sublattice, a strong
tendency toward phase separation. On the experimental side, this ternary alloy, along the
tie-line of ZrRu and ZrPd has been characterized by x-ray diffraction [30, 31] from 16 K to
room temperature, and a monotonic variation of the lattice parameter with alloy composition
has been observed from 0 up to about 70 at.% Pd where the martensitic transformation takes
place. This experimental finding seems to indicate that a solid solution, i.e., a chemically
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random alloy configuration, exists between ZrRu and ZrPd, with no existence of a two-
phase field as predicted by theory. This apparent contradiction can be resolved if one
assumes, starting from the theory side, that because of the strong clustering tendency (see
figure 12), any alloy derived from the melt will result, in the absence of a kinetic driving
force, in a ‘quench-in’ state which can only exhibit short-range order (SRO), and therefore
a single-phase field. The SRO in this alloy case would be difficult to detect since the diffuse
scattering associated with the tendency toward phase separation on one of the simple cubic
sublattices is located at the Bragg positions of the bcc lattice. In the following section we
will see how this tendency toward clustering could explain the observed behaviour of the
electronic specific heat in these alloys.

6. Calculation of the electronic specific heat

If there is one theme that we want to emphasize in this paper, it is the close relationship
between electronic structure and ordering phenomena in alloys. One goal is to predict the
occurrence and the type of ordering from the knowledge of the electronic structure. At the
same time, we want to study how ordering can influence certain electronic properties. One
possible macroscopic observable to consider is the linear coefficient of the low-temperature
specific heat,γ , which is related to the properties of the electrons at the Fermi energy.
Usually the specific heat of a metal or an alloy obeys the law

C(T ) = γ T + βT 3 + · · · (6.1)

where the first term is the electronic contribution, and the second term is the lattice (phonon)
contribution. The coefficientγ turns out to be proportional to the DOS at the Fermi energy
[59], n(EF ):

γ = π2

3
k2
B n(EF ) (6.2)

wherekB is the Boltzmann constant. Actually, the electron–phonon coupling (λe−p) and the
spin fluctuations (λsf ) can increase the bare DOS, andγ is more precisely given by [57]

γ = π2

3
k2
B (1 + λe−p + λsf + · · ·) n(EF ). (6.3)

Figure 13 shows the variation of the electronic specific heat coefficientγ with
composition for the pseudo-binary Zr0.5(Ru1−cPdc)0.5 as obtained from low-temperature
calorimetry [58]. It shows an approximately linear increase ofγ with composition until it
drops at aroundc = 0.68 where the martensitic transformation takes place. This behaviour
has been observed in similar B2-type pseudo-binaries. For instance,γ for Ti0.5(Ni, Fe)0.5

presents a rounded peak around the concentration where the martensitic transformation takes
place, whereas in Ti0.5(Ni, Os)0.5 and Ti0.5(Ni, Ru)0.5 the rounded peak is larger and can be
thought of as forming a ‘plateau’ like in the Zr0.5(Ru, Pd)0.5 case [57].

Assuming that the electron–phonon coupling and the spin fluctuations are constant upon
alloying, the variation ofγ with composition is compatible with the results of our electronic
structure model. First, let us assume that the alloy exhibits a tendency toward phase
separation, as discussed in section 5. With such an assumption,γ for the alloy is well
approximated by the concentration-weighted average ofγ (RuZr) andγ (PdZr). Figure 14,
curve (a), shows then(EF ) that corresponds to a phase-separating system for which the
total DOS was computed as the concentration-weighted average of the DOSs of the two
B2-type binary alloys RuZr and PdZr. Second, using the PCPA, we also calculated the
DOS for the partially ordered alloy as a function of composition, and the results are shown
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Figure 13. The electronic specific heat coefficient, in mJ (g atom)−1 K−2, as a function of Pd
concentration for the pseudo-binary Zr0.5(Ru1−cPdc)0.5 alloy (from reference [57]).

Figure 14. DOSs (in states Ryd−1/atom), at the Fermi energy, as a function of Pd concentration,
for (a) (ZrRu)B2

1−c(ZrPd)B2
c (see the text), and (b) Zr0.5(Ru1−cPdc)0.5 from the PCPA.

in figure 14(b). In that case, the DOS flattens out in the region of highly concentrated Pd
alloys, and this behaviour is attributed to a virtual gap at the Fermi level in the M0RX
plane of the simple cubic Brillouin zone. Besides this minor difference from the previous
case, the behaviours of the two alloy configurations displayed in figure 14 are rather similar
and therefore difficult to distinguish experimentally. However, the approximately linear
increase ofn(EF ) with composition is, to some extent, in better agreement with experiment
in the case of the pseudo-binary alloy exhibiting a tendency toward phase separation. After
conversion to the appropriate units, the rate of increase (taking only the end points) ofγ

agrees to within 15% of the experimentally determined one.
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7. Conclusions

We have described and analysed an electronic structure method based on the TB
approximation for studying the energetics of multi-component alloys. First, a novel scaling
scheme for the TB parameters was introduced. The CPA and GPM were then presented with
their natural extension for treating ternary systems. The method allows the study of partially
ordered systems using a reliable approximation of the cluster CPA. The methodology was
then applied to the study of bcc-based Zr–Ru–Pd alloys. The effective interactions for
the binary systems give rise to ground states at equiatomic composition in agreement with
the available experimental data. The analysis of the second-nearest-neighbour EPI,V RuPd

2 ,
shows that our predictive capabilities can be used to guide the design of new alloys with
specific ordered configurations.

Using the energetic parameters obtained with the TB-CPA-GPM model, we have applied
the CVM to compute the bcc-based phase diagrams of the binary Ru–Zr, Pd–Zr, and Ru–
Pd alloys, and of the pseudo-binary Zr0.5(Ru, Pd)0.5 alloys. Qualitatively, the equilibrium
phases that were obtained for the binary systems agree with the experimental phase diagrams.
Based on the B2/B2 two-phase field predicted for the ternary alloy along this particular tie-
line, we proposed an explanation for the observed variation of the electronic specific heat
coefficient,γ , with composition in Zr0.5(Ru, Pd)0.5 alloys.

We believe that this TB-CPA approach, which includes the treatment of partially ordered
alloys, can be successfully applied for studying the electronic origin of the martensitic
transformation in Zr0.5(Ru1−cPdc) alloys and similar systems, and details of this study will
be reported in a forthcoming paper.
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